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ABSTRACT

Functional image sequences obtained from image reconstruc-
tion techniques applied to Magneto and Electroencephalog-
raphy (M/EEG) data convey a large amount of information
in the space and time domains. Conventional approaches to
their analysis necessitates considerable input from an expert
to extract pertinent information. We introduce in this paper an
automatic data sequencing procedure of these brain activation
maps. Our main objective consists in facilitating and acceler-
ating the extraction of spatiotemporal activation patterns of
interest calledactivation cells. These cells are tracked across
time with consistent labeling that follows a small set of pre-
defined evolutionary scenarios. Resulting graphical synopsis
are exemplified on epileptic spike analysis and indicate satis-
factory consistency with human expertise.

1. INTRODUCTION

Image reconstruction techniques applied to scalp Electro and
Magnetoencephalography (E/MEG) data produce brain acti-
vation maps with excellent time resolution at the infra mil-
lisecond scale. This results in series of image activation se-
quences of typically 1000 images per second of recording.
This information rate makes the analysis cumbersome to ex-
perimentalists. The choice of salient features of interestfor
subsequent analysis and inferences may even end-up being
very subjective. The E/MEG expert usually describes the in-
stantaneous activation maps obtained in terms of number of
activation sources. For each source, the location, amplitude
and occasionally spatial extension of the cortical areas in-
volved are reported and considered for subsequent inference
and classification across subjects and/or conditions. Though
E/MEG benefits from unique time resolution, the very de-
scription of the evolution of brain activations with time is
usually discarded from further consideration and exploration.
This paper introduces a systematic approach to the automatic
analysis of these brain image sequences. We exemplify the
concepts and methodology in the context of epileptic spike
classification.
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Epileptic spike-wave complexes in partial epilepsy are of-
ten rapidly initiated and resolved within an epileptogenicnet-
work of brain areas. These fast propagation and interplay of
cortico-cortical activations are excellent candidates toE/MEG
imaging. In this context, there is a primary need for spike
classification as each patient may be subjected to multiple
types of spikes in terms of E/MEG topography and dynam-
ics. Expert neuro-electrophysiologists are trained to classify
epileptic spikes – most notably from signals at EEG scalp
electrodes – and have accumulated considerable empirical
knowledge to infer e.g. the number of possible foci from
which the spikes may originate [1]. Because daily human
classification of scalp recordings has revealed to be tedious
and highly-subjective (see e.g. [2]), a great number of au-
tomatic techniques have been proposed and are often inte-
grated in commercial software solutions to the neurologist
[3]. E/MEG source reconstruction approaches have the po-
tential to improve the elucidation of the spatial origins ofthe
spikes and represents an active field of research ([1],[2],[4])
but most of them still require considerable input from an ex-
pert. Recently, Ossadtchi et al. proposed a fully-automatic
combination of spike detection, source localization and clas-
sification techniques [5]. However, this approach – like most
of the published material – was built on equivalent focal dipo-
lar models, therefore has a limited potential to elucidate the
time evolution and propagation of the cortical activationsin-
volved as the spike-wave complex unfolds.

The methodology presented here aims at approaching some
of these issues with simple topological considerations, which
elementary building-blocks are calledevolutionary activation
cells.

2. METHODS

2.1. Objectives and basic principles

The primary objective of our approach consists in reaching
significant dimension reduction in the description of the orig-
inal data (i.e. spatiotemporal sequences of cortical currents).
Space and time must therefore be compactly encoded in 2D
graphs that need to be easily understood by an operator with
minimum training. Beyond human readability, specifications
also enforce that data decomposition will be subjected to quan-



titative analysis for e.g. data classification such epileptic spike
sorting. Therefore, instantaneous activation maps that support
a dense distribution of currents need to be efficiently resam-
pled through a segmentation into elementary spatiotemporal
blocks that will be evolving in space and time according to a
set of admissible scenario.

These specifications translate into a sequential process that
unfolds as the following:

1. Cortical current map at each time instantt + 1 is spa-
tially segmented into elementary activation cells;

2. For each activation cell at timet, its descent is identi-
fied from the activation cells att + 1 through a set of
evolutionary scenarios;

3. Cells are tracked fromt to t+1 with consistent labeling;
newborn cells obtain new labels.

The entire process from1 to 3 is then repeated for allt ∈ τ .
Once the process is completed on all available time samples,
the corresponding spatiotemporal decomposition into activa-
tion cells with their associated genealogy is synthesized in a
graphical synopsis. We shall now describe each of these ele-
mentary steps in details.

2.2. Spatial segmentation into cells

The M/EEG inverse problem from scalp surface data con-
sists in modelling the corresponding distribution of cortical
currents. Our approach operates in the context of distributed
dipole models for which image reconstruction techniques ap-
plied to M/EEG data produce at timet an activation map
A(t). A(t) is the set of local neural current estimatesa (r, t)
onΓ, a manifold ofR3:

A(t)
.
= {a (r, t) , r ∈ Γ}. (1)

Our main objective consists of the spatiotemporal characteri-
zation of the entire sequence of activation mapsA = {A(t), t ∈
τ}, τ a time-window of interest, by tracking activation cells
in the spatial and temporal domains. The segmentation of
A(t) into elementary spatial clusters – the activation cells –
is guided by the following working hypothesis:
Hyp.1: instantaneous brain activationA(t) is sparse and fo-
cal. Therefore, the spatial distribution of activation cells is
also sparse and focal.

While some approaches to the resolution of the M/EEG
inverse problem may explicitly consider sparse-focal source
models [6], statistical inference across experimental condi-
tions define thresholds that isolate significant current ampli-
tudes [7]. The thresholded current maps can subsequently be
segmented into a set of cells that are spatially connex. We
then suggest a new definition forA(t) as a set ofN(t) activa-
tion cells:

A(t)
.
= {a(r, t), r ∈ C(t)}, (2)

where:
C(t)

.
= {Ci(t), i ∈ [1, N(t)]}, (3)

and:

Ci(t)
.
= {r, a(r, t) ∈ A(t) andCi(t) connex}. (4)

In practice,Γ is sampled with spatial elements such as voxels
(volumic case) or triangle vertices (surfacic case). Cellsin
C(t) are obtained by the exploration of the connectivity tree
of the spatial elements inA(t).

2.3. Tracking cells across time: evolutionary scenarios

Tracking of activations cells fromt to t + 1 observes the fol-
lowing hypothesis:
Hyp.2: The high temporal resolution of M/EEG translates
into a high degree of similarity betweenA(t + 1) andA(t).
Consequently, mutations of each element inC(t) to elements
in C(t + 1) follow a small set of predefined evolutionary sce-
nario: i) survival inC(t+1), ii) dissociation into multiple ele-
ments ofC(t+1), iii) merging into one single cell ofC(t+1),
and iv) elimination. The fifth scenario concerns the identifi-
cation of cells that are newborn at timet + 1.
To sort out the scenario than may relate any elementc ∈ C(t),
to c′ ∈ C(t + 1), the normalized rate of spatial overlap be-
tweenc andc′ is introduced and is defined as:

V (c, c′)
.
=

S(c ∩ c′)

maxc′′∈C(t+1) S(c′′)
, (5)

whereS(c) is the surface area of cellc.
c′ is considered a priori as a breed ofc if V (c, c′) > 0 and the
entire descent ofc is defined as:

D(c) = {c′ ∈ C(t + 1), V (c, c′) > 0}, (6)

which has the following properties:

1. {∪D(c), c ∈ C(t)} ⊂ C(t + 1);

2. There is no guarantee that:∀c1, c2 ∈ C(t), D(c1) ∩
D(c2) = ∅.

Authorized evolutionary scenarios can now be expressed
usingD(c):

1. c is a survivor fromC(t) in C(t + 1) if card(D(c)) = 1;

2. c splits in new cells if card(D(c)) > 1;

3. c merges with other elements ofC(t) if ∃ α ⊂ C(t) and
∃! c′ ∈ C(t + 1),
∀c ∈ α, c′ ⊂ D(c) ;

4. c is eliminated ifD(c) = ∅;

5. c′ is a newborn ifc′ ∩ {∪D(c), c ∈ C(t)} = ∅.



2.4. Tracking cells across time: labeling

Time-tracking of cells fromt to t + 1 necessitates consis-
tent labeling of i) surviving cells; ii) cell breeds following cell
splitting and iii) newborn cells with new labels. We therefore
introduce the labeling operatorL(·) defined as:

L : A → N (7)

c 7→ j

Consistent labeling withL is enforced by the following label-
ing rules:

1. Scenario sorting: any cell ofC(t + 1) either originates
from a single ascent inC(t) according to thesplit or
merge evolutionary scenario, or is a newborn cell;

2. Instantaneous label unicity:∀t ∈ τ , all cells in C(t)
must wear a different label;

3. Consistency rule:

∀t ∈ τ,∀c ∈ C(t),∀c′ ∈ C(t + 1), (8)

L(c′) = L(c) ⇔ c′ = arg max
c′′∈D(c)

V(c, c′′).

These labeling rules are applied sequentially to all cells in
C(t+1) once labeling of cells inC(t) is completed. Newborn
cells with no ascent and cells resulting from cell splittingwith
no available ascent label are tagged with a new label.

2.5. Synopsis: building the genealogy tree

This last step in the exploration of activation maps consists of
the generation of a compact graphical synopsis. This new ob-
ject can be interpreted as a genealogy graph of all cells inA
and may serve as both a 4D data visualizer to the human op-
erator and as a graph tree in subsequent quantitative analysis
and contrast inference between e.g. experimental conditions.
Each activation cell is represented as an horizontal bar which
length encodes its lifespan. Its color encodes the instanta-
neous location of its centroid (Fig. 1). Position of the bar on
the y-axis encodes its label. Additional graphical items may
be added to the synopsis to represent for the scenarios that
ruled cell evolution fromt to t + 1.

Fig. 1. Colormap used for the encoding of the locations of
cortical activation cells.

3. RESULTS

The method is illustrated on a small set of averaged interic-
tal epileptic spikes recorded from a voluntary patient on the
151-channel whole-head array at the La Salpêtrière hospital
(VSM MedTech). Spikes were subsequently classified in two
classes by a neurologist in accordance to their clinical rele-
vance. To increase SNR, 20 spikes from the same class were
then averaged, time-locked to the spike peak latency.
Manual data exploration of the corresponding MEG source
maps indicated that the two types of spikes originated from
the lateral right temporo-occipital junction (T spikes) and the
right hippocampal region (H spikes), respectively.
The cell sequencing approach was applied to the H-spike av-
erage (Fig. 2) and two distinct T-spike averages (T1 & T2,
Fig. 3) obtained from two separate acquisition runs for con-
sistency checking of the method.
Fig. 3 shows great similarity between the T1 and T2 cell ge-

nealogy graphs, thereby confirming the consistency of the cell
decomposition with the outcome of human expert identifica-
tion. Aboutt = 0, a waterfall of short activation cells marks

Fig. 2. Type-H hippocampic spike. Top: the graphical syn-
opsis of the corresponding cortical activation maps. Bottom:
activation cells are represented on a smoothed tessellation of
the subject’s cortical surface. Color encodes the label of each
cell. From left to right, view of the ventral cortical surface
at time t = 0s and a zoomed view of the same cells. Last
two images represents the activation cells at timet =350ms
(posterior and zoomed views).



the spike lifespan in a small network of neighboring temporo-
occipital cortical regions. The graphical synopsis later shows
the resurgence of activity in similar regions during the subse-
quent wave of the spike-wave complex but with significantly
slower dynamics.
As expected, the contrast in terms of location and dynamics of
activations with the sequencing of the H-spike is quite striking
(see Fig. 2).

4. CONCLUSION

We have presented a new tool for the facilitated exploration
and quantitative analysis of functional brain mapping dataat
high-temporal resolution. This tool is based on the spatial
segmentation of activation maps into activations cells. These
cells are tracked across time with consistent labeling thatfol-
lows a small set of predefined evolutionary scenarios. Re-
sulting graphical synopsis was exemplified on epileptic spike
analysis and indicate satisfactory consistency with humanex-
pertise.
Ongoing research is now focussing on larger-scale evaluation
of this method and on specific quantitative tools for the anal-
ysis of cross-condition contrasts in functional imaging.

5. REFERENCES

[1] Wahlberg P., Lantz G., ”Methods for robust clustering of
epileptic EEG Spikes”,IEEE Transactions on Biomedical
Engineering, Volume 47, no7, July 2000.

[2] Van’t Ent D., Manshandena I., Ossenblokb P., et al.,
”Spike cluster analysis in neocortical localization related
yields clinically significant equivalent source localization
in magnetoencephalogram (MEG)”,Clinical Neurophysi-
ology, 114:1948-1962, 2003.

[3] Grewal S., Gotman J., ”An automatic warning system for
epileptic seizures recorded on intracerebral EEGs”,Clini-
cal Neurophysiology , 116:2460-2472, 2005.

[4] Kobayashi K., Akiyama T., Nakahori T., ”Systematic
source estimation of spikes by a combination of indepen-
dent component analysis and RAP-MUSIC. I: Principles
and simulation study.”,Clinical Neurophysiology,113:713-
724, 2002.

[5] Ossadtchi A., Baillet S., Moscher J.C., Thyerlei D.,
Sutherling W., Leahy R.M., ”Automated interictal spike
detection and source localization in magnetoencephalog-
raphy using independent components analysis and spatio-
temporal clustering”,Clinical Neurophysiology, 115:508-
522, 2004.

[6] Baillet S.; Mosher J.C.; Leahy R.M., ”Electromagnetic
Brain Mapping”,IEEE Sig. Proc. Mag., 25:355-368, 2001.

[7] Pantazis D.; Nichols T.E.; Baillet S., Leahy R.M., ”A
Comparison of Random Field Theory and Permutation
Methods for the Statistical Analysis of MEG data”,Neu-
roimage, 25:355-368, April, 2005.

Fig. 3. Type-TO temporo-occipital spike. a.: a butterfly plot
of times series on the 151 MEG channels; b. (res. e.) the
graphical synopsis for spike T1 (res. T2); c. and f.: a display
of cortical cells at timet = 0s with the associated zoomed
views (d. and g.).


